metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[1,3-bis(benzimidazol-2-yl)propane- $\kappa^2 N, N'$]copper(II) dinitrate methanol disolvate

Bo Hu, Min Wang, Xiao-Yan Wang, Xue-Gang Song and Cheng-Gang Wang*

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Received 6 April 2007; accepted 13 April 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.130; data-to-parameter ratio = 17.1.

In the title compound, $[Cu(C_{17}H_{16}N_4)_2](NO_3)_2 \cdot 2C_2H_5OH$, the Cu^{II} ion lies on a crystallographic twofold rotation axis and is in a distorted square-planar coordination geometry formed by four N atoms from two 1,3-bis(benzimidazol-2-yl)propane ligands. The N-Cu-N angles range from 90.25 (7) to 144.89 (11)°. In the crystal structure, a two-dimensional framework is formed by a combination of N-H···O and O-H···O hydrogen bonds.

Related literature

For related literature, see: Albada *et al.* (1995); Roderick *et al.* (1972); Wang & Joullie (1957), Allen *et al.* (1987); Sun *et al.* (2004).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Cu}(\mathrm{C}_{17}\mathrm{H}_{16}\mathrm{N}_4)_2](\mathrm{NO}_3)_2\cdot 2\mathrm{C}_2\mathrm{H}_6\mathrm{O} \\ M_r = 804.32 \\ \mathrm{Orthorhombic}, Pccn \\ a = 14.4793 \ (10) \ \mathrm{\mathring{A}} \\ b = 17.8978 \ (13) \ \mathrm{\mathring{A}} \\ c = 14.3078 \ (10) \ \mathrm{\mathring{A}} \end{array}$

 $V = 3707.8 (5) \text{ Å}^{3}$ Z = 4Mo Ka radiation $\mu = 0.66 \text{ mm}^{-1}$ T = 297 (2) K $0.45 \times 0.32 \times 0.20 \text{ mm}$

Data collection

Bruker APEX CCD diffractometer4453 independent reflectionsAbsorption correction: none3394 reflections with $I > 2\sigma(I)$ 23966 measured reflections $R_{int} = 0.042$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$vR(F^2) = 0.130$	independent and constrained
S = 1.07	refinement
453 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
261 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
restraint	

Table 1

Selected bond angles (°).

N3-Cu1-N3 ⁱ	144.46 (12)	$N3-Cu1-N1^{i}$	90.25 (7)
N3-Cu1-N1	100.35 (7)	$N1-Cu1-N1^{i}$	144.89 (11)

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, z$.

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$04 - H4A \cdots 02^{ii}$ $04 - H4A \cdots 01^{ii}$ $N2 - H2N \cdots 03^{iii}$ $N2 - H2N \cdots 02^{iii}$	0.816 (10) 0.816 (10) 0.78 (3) 0.78 (3)	2.014 (17) 2.60 (4) 2.21 (3) 2.37 (3)	2.814 (4) 3.261 (5) 2.929 (4) 2.969 (3)	167 (5) 139 (5) 152 (3) 134 (3)

Symmetry codes: (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x - 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work is supported by the Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology (No. RCT2004011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2363).

References

- Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. L. & Reedijk, J. (1995). *Inorg. Chem.* 34, 4910–4917.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Roderick, W. R., Nordeen, C. W., Von Esch, A. M. Jr & Appell, R. N. (1972). J. Med. Chem. 15, 655–658.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sun, Y., Liu, X.-H., Zhang, X., Somg, H.-B. & Liu, X.-L. (2004). Chin. J. Struct. Chem. 23, 803–807.
- Wang, L. L.-Y. & Joullie, M. M. (1957). J. Am. Chem. Soc. 79, 5706-5708.

Acta Cryst. (2007). E63, m1416 [doi:10.1107/S1600536807018570]

Bis[1,3-bis(benzimidazol-2-yl)propane- $\kappa^2 N, N'$]copper(II) dinitrate methanol disolvate

B. Hu, M. Wang, X.-Y. Wang, X.-G. Song and C.-G. Wang

Comment

Interest in bis(2-benzimidazolyl)alkanes is widespread, due to their wide-ranging antiviral activity (Roderick *et al.*, 1972). Herein, we report the crystal structure of the title compound (I). In the cation (Fig. 1), the Cu^{II} ion lies on a crystallogrphic twofold axis. Hence, the Cu^{II} ion is coordinated by four N atoms (N1, N3, N1a, N3a [symmety code: (*a*) 1/2 - x, 3/2 - y, *z*]) from two dbz ligangs. The bond anlges listed in Table 1 indicate a distorted square-planar coordination geomtry.

In the crystal structure, molecules are linked by N—H_{benzimidazole}····O_{nitrate} and O—H_{methanol}····O_{nitrate} hydrogen bonds, forming a two-dimensional framework structure perpendicular to the *ab* plane (Table 2, Fig. 2).

Experimental

The ligand 1,3-bis(2-benzimidazolyl)propane (dbz) was synthesized from reported literature earlier (van Albada *et al.*, 1995; Wang

& Joullie, 1957). The title compound was prepared according to the following procedure: The ligand (0.28 g, 1 mmol) in 10 ml me thanol was added slowly to a $Cu(NO_3)_2$ ·2H₂O (0.12 g, 0.5 mmol) solution of 10 ml me thanol. The mixture was stirred for 1 h. After filtration, the brownish solution was allowed to stand at room temperature. Green block-shaped crystals of (I) were obtained after three weeks.

Refinement

H atoms bonded to O and N atoms were located in difference maps and then included in the refinement with bond-length restraints of O-H = 0.82 Å and N-H = 0.78 Å, with $U_{iso}(H)=1.2U_{eq}$ (O) and the $U_{iso}(H)$ of the N—H atoms refined. H atoms bonded to C atoms were placed in calculated positions and included in the riding-model approximation, with C-H = 0.97—0.98 Å and U iso(H) = $1.2U_{eq}(C \text{ of methylene and aromatic})$ or $1.5U_{eq}(C \text{ of methylene})$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The H atoms, anion and solvent molecules are not shown. [symmetry code: (a) 1/2 - x, 3/2 - y, z]

Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded (dashed lines) two-dimensional layers.

Bis[1,3-bis(benzimidazol-2-yl)propane- $\kappa^2 N, N'$]copper(II) dinitrate methanol solvate

Crystal data	
$[Cu(C_{17}H_{16}N_4)_2](NO_3)_2 \cdot 2C_2H_6O$	$F_{000} = 1676$
$M_r = 804.32$	$D_{\rm x} = 1.441 {\rm Mg m}^{-3}$
Orthorhombic, Pccn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 5026 reflections
<i>a</i> = 14.4793 (10) Å	$\theta = 2.3 - 25.4^{\circ}$
<i>b</i> = 17.8978 (13) Å	$\mu = 0.66 \text{ mm}^{-1}$
c = 14.3078 (10) Å	T = 297 (2) K
$V = 3707.8 (5) \text{ Å}^3$	Block, green
<i>Z</i> = 4	$0.45\times0.32\times0.20~mm$
Data collection	
Bruker APEX CCD diffractometer	3394 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.042$
Monochromator: graphite	$\theta_{\text{max}} = 28.0^{\circ}$
T = 297(2) K	$\theta_{\min} = 1.8^{\circ}$
ϕ and ω scans	$h = -19 \rightarrow 18$
Absorption correction: none	$k = -21 \rightarrow 23$

 $l = -17 \rightarrow 18$

23966 measured reflections

4453 independent reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0635P)^2 + 1.4161P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
4453 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
261 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H4N	0.293 (2)	0.4833 (17)	0.041 (2)	0.048 (8)*
H2N	-0.077 (2)	0.6948 (16)	0.111 (2)	0.048 (8)*
Cu1	0.2500	0.7500	0.06676 (3)	0.03171 (13)
N1	0.11849 (13)	0.74057 (10)	0.10902 (14)	0.0352 (4)
N3	0.27403 (13)	0.64615 (10)	0.02440 (14)	0.0342 (4)
C1	0.07694 (16)	0.79298 (12)	0.16863 (16)	0.0368 (5)
C2	0.1142 (2)	0.85029 (14)	0.22291 (17)	0.0449 (6)
H2	0.1773	0.8601	0.2228	0.054*
C3	0.0542 (2)	0.89193 (15)	0.2768 (2)	0.0554 (7)
Н3	0.0774	0.9310	0.3127	0.067*
C4	-0.0399 (2)	0.87695 (17)	0.2789 (2)	0.0619 (8)
H4	-0.0782	0.9062	0.3162	0.074*
C5	-0.0778 (2)	0.82015 (17)	0.2275 (2)	0.0562 (7)
Н5	-0.1407	0.8098	0.2294	0.067*
C6	-0.01757 (17)	0.77856 (15)	0.17211 (18)	0.0430 (6)
C7	0.04996 (16)	0.69688 (13)	0.07935 (16)	0.0371 (5)

C8	0.05757 (17)	0.62941 (14)	0.01904 (18)	0.0434 (6)
H8A	0.1047	0.6377	-0.0280	0.052*
H8B	-0.0007	0.6213	-0.0129	0.052*
C9	0.08211 (18)	0.55980 (13)	0.07567 (19)	0.0465 (6)
H9A	0.0857	0.5173	0.0338	0.056*
H9B	0.0331	0.5501	0.1203	0.056*
C10	0.17360 (16)	0.56732 (13)	0.12819 (17)	0.0405 (5)
H10A	0.1698	0.6085	0.1721	0.049*
H10B	0.1856	0.5220	0.1633	0.049*
C11	0.25044 (16)	0.58083 (13)	0.06119 (16)	0.0371 (5)
C12	0.36087 (17)	0.55352 (13)	-0.03919 (17)	0.0396 (5)
C13	0.4271 (2)	0.52029 (15)	-0.09541 (19)	0.0516 (7)
H13	0.4376	0.4690	-0.0940	0.062*
C14	0.4766 (2)	0.56670 (17)	-0.1534 (2)	0.0568 (7)
H14	0.5219	0.5465	-0.1918	0.068*
C15	0.4603 (2)	0.64322 (17)	-0.1558 (2)	0.0543 (7)
H15	0.4951	0.6729	-0.1959	0.065*
C16	0.39374 (18)	0.67644 (14)	-0.10034 (18)	0.0465 (6)
H16	0.3825	0.7275	-0.1030	0.056*
C17	0.34427 (16)	0.63005 (13)	-0.04022 (16)	0.0363 (5)
C18	0.1719 (4)	0.1726 (3)	0.0359 (4)	0.1238 (19)
H18A	0.1675	0.2185	0.0705	0.186*
H18B	0.1110	0.1540	0.0232	0.186*
H18C	0.2035	0.1816	-0.0221	0.186*
N2	-0.03139 (15)	0.71824 (13)	0.11500 (16)	0.0444 (5)
N4	0.30001 (15)	0.52477 (12)	0.02574 (16)	0.0423 (5)
N5	0.81550 (16)	0.58786 (18)	0.1762 (2)	0.0654 (7)
01	0.7826 (3)	0.53217 (18)	0.2119 (3)	0.1170 (11)
O2	0.81605 (17)	0.64741 (15)	0.2217 (2)	0.0854 (7)
O3	0.84823 (19)	0.58743 (19)	0.0982 (2)	0.1039 (10)
O4	0.2211 (2)	0.11977 (14)	0.08836 (19)	0.0816 (7)
H4A	0.216 (4)	0.122 (3)	0.1451 (8)	0.122*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0331 (2)	0.0260 (2)	0.0361 (2)	-0.00241 (15)	0.000	0.000
N1	0.0356 (10)	0.0323 (10)	0.0376 (10)	-0.0013 (8)	0.0028 (8)	0.0005 (8)
N3	0.0372 (10)	0.0273 (9)	0.0380 (10)	-0.0017 (7)	0.0034 (8)	-0.0023 (8)
C1	0.0435 (13)	0.0311 (12)	0.0357 (12)	0.0029 (9)	0.0047 (9)	0.0073 (9)
C2	0.0571 (16)	0.0381 (13)	0.0395 (13)	-0.0006 (11)	0.0073 (11)	0.0030 (11)
C3	0.084 (2)	0.0397 (14)	0.0424 (15)	0.0062 (14)	0.0068 (14)	0.0015 (11)
C4	0.075 (2)	0.0527 (17)	0.0581 (18)	0.0256 (15)	0.0183 (15)	0.0057 (14)
C5	0.0488 (15)	0.0561 (17)	0.0636 (18)	0.0159 (13)	0.0125 (13)	0.0094 (14)
C6	0.0441 (14)	0.0407 (13)	0.0441 (14)	0.0063 (11)	0.0030 (10)	0.0098 (11)
C7	0.0365 (12)	0.0381 (12)	0.0367 (12)	-0.0029 (10)	-0.0020 (9)	0.0079 (10)
C8	0.0415 (13)	0.0463 (14)	0.0425 (14)	-0.0091 (11)	-0.0029 (10)	-0.0071 (11)
C9	0.0459 (14)	0.0346 (13)	0.0589 (16)	-0.0109 (11)	0.0082 (11)	-0.0028 (11)

C10	0.0464 (14)	0.0302 (12)	0.0448 (14)	-0.0018 (10)	0.0081 (10)	0.0029 (10)
C11	0.0404 (12)	0.0317 (11)	0.0391 (12)	-0.0022 (10)	-0.0016 (10)	-0.0015 (9)
C12	0.0442 (13)	0.0341 (12)	0.0407 (13)	-0.0009 (10)	0.0020 (10)	-0.0012 (10)
C13	0.0596 (17)	0.0414 (14)	0.0540 (16)	0.0069 (12)	0.0091 (13)	-0.0075 (12)
C14	0.0592 (17)	0.0622 (18)	0.0491 (16)	0.0052 (14)	0.0167 (13)	-0.0060 (14)
C15	0.0610 (17)	0.0585 (17)	0.0434 (14)	-0.0055 (14)	0.0155 (13)	0.0019 (13)
C16	0.0572 (16)	0.0381 (13)	0.0441 (14)	-0.0047 (11)	0.0067 (12)	0.0026 (11)
C17	0.0391 (12)	0.0349 (12)	0.0348 (12)	-0.0031 (10)	0.0006 (9)	-0.0024 (9)
C18	0.140 (5)	0.074 (3)	0.158 (5)	0.013 (3)	0.034 (4)	0.030 (3)
N2	0.0335 (12)	0.0476 (12)	0.0521 (13)	-0.0011 (10)	-0.0017 (9)	0.0090 (11)
N4	0.0517 (13)	0.0253 (10)	0.0498 (12)	-0.0002 (9)	0.0078 (10)	-0.0003 (9)
N5	0.0395 (13)	0.0756 (19)	0.081 (2)	-0.0106 (13)	-0.0033 (13)	0.0111 (16)
O1	0.133 (3)	0.084 (2)	0.134 (3)	-0.032 (2)	0.020 (2)	0.025 (2)
O2	0.0706 (16)	0.0768 (17)	0.109 (2)	-0.0088 (13)	0.0124 (14)	0.0026 (16)
03	0.0819 (18)	0.147 (3)	0.0829 (19)	-0.0447 (18)	0.0125 (15)	-0.0126 (18)
O4	0.114 (2)	0.0473 (13)	0.0834 (17)	0.0018 (13)	0.0006 (16)	-0.0110 (13)

Geometric parameters (Å, °)

Cu1—N3	1.9857 (18)	С9—Н9В	0.9700
Cu1—N3 ⁱ	1.9857 (18)	C10-C11	1.488 (3)
Cu1—N1	2.0049 (19)	C10—H10A	0.9700
Cu1—N1 ⁱ	2.0049 (19)	C10—H10B	0.9700
N1—C7	1.333 (3)	C11—N4	1.334 (3)
N1—C1	1.403 (3)	C12—N4	1.380 (3)
N3—C11	1.327 (3)	C12—C13	1.386 (4)
N3—C17	1.404 (3)	C12—C17	1.391 (3)
C1—C6	1.393 (3)	C13—C14	1.375 (4)
C1—C2	1.395 (3)	С13—Н13	0.9300
C2—C3	1.380 (4)	C14—C15	1.390 (4)
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.390 (5)	C15—C16	1.382 (4)
С3—Н3	0.9300	C15—H15	0.9300
C4—C5	1.369 (5)	C16—C17	1.394 (3)
C4—H4	0.9300	C16—H16	0.9300
C5—C6	1.393 (4)	C18—O4	1.403 (5)
С5—Н5	0.9300	C18—H18A	0.9600
C6—N2	1.369 (4)	C18—H18B	0.9600
C7—N2	1.339 (3)	C18—H18C	0.9600
С7—С8	1.488 (3)	N2—H2N	0.78 (3)
C8—C9	1.528 (4)	N4—H4N	0.78 (3)
C8—H8A	0.9700	N5—O3	1.213 (4)
C8—H8B	0.9700	N5—O1	1.217 (4)
C9—C10	1.529 (4)	N5—O2	1.249 (4)
С9—Н9А	0.9700	O4—H4A	0.816 (10)
N3—Cu1—N3 ⁱ	144.46 (12)	Н9А—С9—Н9В	107.8
N3—Cu1—N1	100.35 (7)	C11—C10—C9	110.2 (2)
N3 ⁱ —Cu1—N1	90.25 (7)	C11—C10—H10A	109.6

N3—Cu1—N1 ⁱ	90.25 (7)	C9—C10—H10A	109.6
N3 ⁱ —Cu1—N1 ⁱ	100.35 (7)	C11—C10—H10B	109.6
N1—Cu1—N1 ⁱ	144.89 (11)	С9—С10—Н10В	109.6
C7—N1—C1	105.46 (19)	H10A—C10—H10B	108.1
C7—N1—Cu1	131.33 (16)	N3—C11—N4	111.9 (2)
C1—N1—Cu1	122.29 (15)	N3—C11—C10	126.2 (2)
C11—N3—C17	105.48 (19)	N4—C11—C10	121.7 (2)
C11—N3—Cu1	131.19 (16)	N4—C12—C13	132.3 (2)
C17—N3—Cu1	121.32 (15)	N4—C12—C17	105.3 (2)
C6—C1—C2	119.8 (2)	C13—C12—C17	122.4 (2)
C6—C1—N1	108.6 (2)	C14—C13—C12	116.8 (2)
C2	131.6 (2)	C14—C13—H13	121.6
C3—C2—C1	117.7 (3)	С12—С13—Н13	121.6
С3—С2—Н2	121.2	C13—C14—C15	121.4 (3)
C1—C2—H2	121.2	C13—C14—H14	119.3
C2—C3—C4	121.7 (3)	C15—C14—H14	119.3
С2—С3—Н3	119.2	C16—C15—C14	121.9 (3)
С4—С3—Н3	119.2	С16—С15—Н15	119.1
C5—C4—C3	121.6 (3)	C14—C15—H15	119.1
С5—С4—Н4	119.2	C15—C16—C17	117.1 (2)
С3—С4—Н4	119.2	C15—C16—H16	121.4
C4—C5—C6	116.9 (3)	C17—C16—H16	121.4
С4—С5—Н5	121.6	C12—C17—C16	120.3 (2)
С6—С5—Н5	121.6	C12—C17—N3	108.7 (2)
N2—C6—C5	132.0 (3)	C16—C17—N3	131.0 (2)
N2	105.6 (2)	O4—C18—H18A	109.5
C5—C6—C1	122.4 (3)	O4—C18—H18B	109.5
N1—C7—N2	111.5 (2)	H18A—C18—H18B	109.5
N1—C7—C8	127.3 (2)	O4—C18—H18C	109.5
N2—C7—C8	121.2 (2)	H18A—C18—H18C	109.5
С7—С8—С9	111.8 (2)	H18B-C18-H18C	109.5
С7—С8—Н8А	109.3	C7—N2—C6	108.9 (2)
С9—С8—Н8А	109.3	C7—N2—H2N	124 (2)
С7—С8—Н8В	109.3	C6—N2—H2N	126 (2)
С9—С8—Н8В	109.3	C11—N4—C12	108.6 (2)
H8A—C8—H8B	107.9	C11—N4—H4N	123 (2)
C8—C9—C10	112.97 (19)	C12—N4—H4N	128 (2)
С8—С9—Н9А	109.0	O3—N5—O1	122.3 (4)
С10—С9—Н9А	109.0	O3—N5—O2	118.9 (3)
С8—С9—Н9В	109.0	O1—N5—O2	118.9 (3)
С10—С9—Н9В	109.0	C18—O4—H4A	117 (4)
N3—Cu1—N1—C7	-30.8 (2)	N2—C7—C8—C9	-93.1 (3)
N3 ⁱ —Cu1—N1—C7	115.1 (2)	C7—C8—C9—C10	-59.3 (3)
N1 ⁱ —Cu1—N1—C7	-136.3 (2)	C8—C9—C10—C11	-59.8 (3)
N3—Cu1—N1—C1	161.87 (17)	C17—N3—C11—N4	0.3 (3)
N3 ⁱ —Cu1—N1—C1	-52.24 (18)	Cu1—N3—C11—N4	-163.27 (17)
N1 ⁱ —Cu1—N1—C1	56.35 (16)	C17—N3—C11—C10	-174.9 (2)

N3 ⁱ —Cu1—N3—C11	-146.5 (2)	Cu1—N3—C11—C10	21.5 (4)
N1—Cu1—N3—C11	-41.2 (2)	C9—C10—C11—N3	82.5 (3)
N1 ⁱ —Cu1—N3—C11	105.1 (2)	C9—C10—C11—N4	-92.3 (3)
N3 ⁱ —Cu1—N3—C17	52.10 (16)	N4-C12-C13-C14	180.0 (3)
N1—Cu1—N3—C17	157.37 (17)	C17—C12—C13—C14	-0.1 (4)
N1 ⁱ —Cu1—N3—C17	-56.28 (18)	C12-C13-C14-C15	-0.5 (5)
C7—N1—C1—C6	-0.3 (2)	C13-C14-C15-C16	0.0 (5)
Cu1—N1—C1—C6	169.84 (15)	C14—C15—C16—C17	1.1 (4)
C7—N1—C1—C2	176.9 (2)	N4-C12-C17-C16	-178.9 (2)
Cu1—N1—C1—C2	-13.0 (3)	C13—C12—C17—C16	1.2 (4)
C6—C1—C2—C3	-1.5 (3)	N4—C12—C17—N3	0.3 (3)
N1—C1—C2—C3	-178.5 (2)	C13-C12-C17-N3	-179.7 (2)
C1—C2—C3—C4	1.2 (4)	C15—C16—C17—C12	-1.6 (4)
C2—C3—C4—C5	-0.1 (4)	C15—C16—C17—N3	179.4 (3)
C3—C4—C5—C6	-0.7 (4)	C11—N3—C17—C12	-0.4 (3)
C4—C5—C6—N2	178.3 (3)	Cu1—N3—C17—C12	165.21 (16)
C4—C5—C6—C1	0.3 (4)	C11—N3—C17—C16	178.7 (3)
C2-C1-C6-N2	-177.6 (2)	Cu1—N3—C17—C16	-15.7 (4)
N1—C1—C6—N2	0.0 (3)	N1—C7—N2—C6	-0.6 (3)
C2—C1—C6—C5	0.8 (4)	C8—C7—N2—C6	176.1 (2)
N1-C1-C6-C5	178.4 (2)	C5—C6—N2—C7	-177.8 (3)
C1—N1—C7—N2	0.6 (3)	C1—C6—N2—C7	0.4 (3)
Cu1—N1—C7—N2	-168.34 (16)	N3-C11-N4-C12	-0.1 (3)
C1—N1—C7—C8	-175.9 (2)	C10-C11-N4-C12	175.4 (2)
Cu1—N1—C7—C8	15.1 (4)	C13—C12—N4—C11	179.8 (3)
N1—C7—C8—C9	83.1 (3)	C17—C12—N4—C11	-0.1 (3)

Symmetry codes: (i) -x+1/2, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O4—H4A···O2 ⁱⁱ	0.816 (10)	2.014 (17)	2.814 (4)	167 (5)
O4—H4A…O1 ⁱⁱ	0.816 (10)	2.60 (4)	3.261 (5)	139 (5)
N2—H2N···O3 ⁱⁱⁱ	0.78 (3)	2.21 (3)	2.929 (4)	152 (3)
N2—H2N···O2 ⁱⁱⁱ	0.78 (3)	2.37 (3)	2.969 (3)	134 (3)
Summatry adda; (ii) $-r+1$ $r+1/2$ $-r+1/2$; (iii) $r-1$				

Symmetry codes: (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, y, z.

